Ai模特换装!100%保留衣服原型!假人换真人!全网首发最简单做法,半身照全身照都能换,衣服不换只换人,模特要失业了~ 假人摆拍 秒换模特

Jojo 人工智能 Podcast 播客
28 Mar 202314:28

TLDR欢迎回到99的YouTube频道,本期视频深入探讨了使用Stable Diffusion技术进行模特换装的方法。视频中介绍了如何在本地或通过Google collab一键安装Stable Diffusion,并分享了如何使用Run Diffusion服务,突破地域与设备限制。视频详细演示了半身照和全身照的模特换装流程,包括脸部、手部的替换和修复,强调了保留衣服原型的重要性。通过这些技术,观众可以轻松将假人转换为真人模特,展现了AI技术在时尚行业的应用潜力。

Takeaways

  • 📈 **技术普及预警**:视频作者提到,模特换装技术将很快被广泛应用,如果不尽快分享,信息可能很快就会过时。
  • 👚 **换装技术介绍**:视频中介绍了如何使用stable diffusion技术进行模特换装,包括半身照和全身照的换装方法。
  • 🖥️ **软件工具推荐**:推荐了Google Collab和Run Diffusion两个工具,并提供了Run Diffusion的使用链接和折扣码。
  • 💻 **电脑配置无关**:Run Diffusion的优势在于不受地理位置和电脑配置的限制,即使低配电脑也能运行。
  • 💰 **成本效益分析**:作者购买了Run Diffusion的creators package,强调其性价比,按使用时间计费。
  • 🔍 **细节处理技巧**:在进行全身照换装时,使用open pose来提取和固定模特的身体姿态,以便于更好地换装。
  • 🎨 **参数调整重要性**:在换装过程中,调整denoising strength(去噪强度)和batch count(批次)等参数对于最终效果至关重要。
  • 👐 **手部细节挑战**:手部是换装过程中最难处理的部分,通常需要多次尝试和调整才能达到满意的效果。
  • 📈 **技术进步预测**:作者预测在不久的将来,模特换装技术将实现自动化,大大简化操作流程。
  • 📚 **教程资源分享**:视频作者提供了关于如何使用提示词和构建有效提示的教程,并强调其课程具有很高的性价比。
  • 🚀 **未来展望**:作者认为stable diffusion技术潜力巨大,不仅局限于模特换装,还能创造出更多可能性。

Q & A

  • 什么是Stable Diffusion,它在视频脚本中的作用是什么?

    -Stable Diffusion是一种深度学习模型,用于生成图像。在视频脚本中,它被用来将假人模特替换为真人模特,通过改变脸部、手部和脚部,同时保留衣服的原型。

  • 视频作者提到了哪些Stable Diffusion的使用方式?

    -视频作者提到了三种使用Stable Diffusion的方式:本地安装、Google Collab一键安装和使用Run Diffusion。作者推荐使用Run Diffusion,因为它没有地域和电脑的限制。

  • 作者为什么选择使用Run Diffusion?

    -作者选择使用Run Diffusion的原因包括:没有地域限制、没有电脑限制、即使使用较差的电脑也能运行,以及作者购买了其每月$35.99的creators package,可以安装特定的checkpoint。

  • 在Stable Diffusion中,作者提到了哪些关键的设置和参数?

    -作者提到了关键的设置和参数包括:使用Image to Image模式、Inpaint功能、Denoising Strength(去噪强度)、Batch Count(批次数量)、CFG scale以及特定的sampling method,如DPM++ SDE Karas。

  • 作者提到了哪些技巧来改善生成图像的质量?

    -作者提到了调整Denoising Strength来接近原始模型或提示词,使用Inpaint功能来修复手部和衣服,以及使用ControlNet中的open pose来提取和固定模特的身体姿态。

  • 视频作者提到了哪些关于Stable Diffusion的挑战和限制?

    -作者提到了手部细节难以控制,有时需要依赖运气来获得满意的结果。此外,作者还提到了Stable Diffusion安装过程的复杂性,以及对于非专业人士来说,如何有效地使用这项技术是一个挑战。

  • 作者如何展示Stable Diffusion生成的最终效果?

    -作者通过展示从假人模特到真人模特的转变,展示了Stable Diffusion的最终效果。这包括了对脸部、手部和脚部的替换,同时保持衣服原型不变。

  • 作者提到了哪些关于Stable Diffusion未来的预测或期望?

    -作者预测在不久的将来,Stable Diffusion将被广泛应用,并且可能会实现自动化。作者期望在未来一到两个月内,技术将取得更大的进展。

  • 作者为什么认为Stable Diffusion能够为用户节省成本?

    -作者认为通过使用Stable Diffusion,用户可以避免花费高昂的费用进行专业的模特拍摄或3D建模,因为Stable Diffusion能够以较低的成本生成高质量的图像。

  • 作者提供了哪些资源来帮助用户更好地使用Stable Diffusion?

    -作者提供了Run Diffusion的链接,以及通过作者的链接注册Run Diffusion可以获得15%折扣码的信息。此外,作者还提到了自己的课程,其中包含了如何使用Stable Diffusion的实例和技巧。

  • 作者提到了哪些关于Stable Diffusion的道德或社会问题?

    -作者提到了Stable Diffusion可能会影响模特的就业,因为该技术能够将假人模特替换为看起来像真人的模特,从而可能减少对真人模特的需求。

  • 作者为什么认为Stable Diffusion的使用门槛将会降低?

    -作者认为尽管目前Stable Diffusion的使用可能需要一定的技术知识,但预计在不久的将来,随着技术的进步,它将变得更加用户友好,实现自动化,从而降低使用门槛。

Outlines

00:00

🎥 Introduction to Model Changeover with Stable Diffusion

The paragraph introduces the concept of model changeover using the stable diffusion technique. The speaker explains that while their method may not be the fastest, it is accessible to everyone. They discuss the use of stable diffusion in various forms, including local installation and Google Collab, as well as the preference for using Run Diffusion due to its lack of geographical and computer restrictions. The speaker also mentions purchasing a monthly creators package to use specific features and provides a discount code for their audience.

05:01

👗 Tutorial on Half-Length Model Photo Transformation

In this paragraph, the speaker provides a tutorial on transforming half-length model photos using stable diffusion. They explain the process of using image to image, inpainting, and selecting the appropriate sampling method for human subjects. The speaker also shares their personal settings for denoising strength and batch count, and demonstrates how to fine-tune the model's face and hands. They emphasize the element of luck in achieving satisfactory results and provide a link to their prompt words for the audience's reference.

10:02

💃 Full-Body Model Outfit Change with ControlNet

The speaker discusses the process of full-body model outfit change using ControlNet and open pose. They explain the importance of extracting the model's pose and fixing the body before making changes. The speaker provides a detailed walkthrough of the settings and parameters, including the use of inpainting mask and denoising strength, to achieve a realistic transformation. They also share their experience with the complexity of handling hand details and the need for multiple attempts to get a satisfactory result. The speaker concludes by expressing their satisfaction with the outcome and provides insights into the potential for automation in the future.

Mindmap

Keywords

💡Ai模特换装

Ai模特换装是指使用人工智能技术将服装模特的图片进行修改,替换成真人模特的效果。在视频中,这涉及到使用Stable Diffusion技术,通过特定的提示词和参数调整,将假人模特的图片转换成真人模特的样子,同时保留衣服的原型。

💡Stable Diffusion

Stable Diffusion是一种深度学习模型,用于生成高质量的图像。在视频中,它被用来进行Ai模特换装,通过图像到图像的转换,将假人模特替换为真人模特。它支持多种安装方式,包括本地安装和在线使用如Google Collab或Run Diffusion。

💡Google Collab

Google Collab是Google提供的云端协作平台,支持机器学习和人工智能项目的协作开发。视频中提到,可以通过Google Collab进行Stable Diffusion的一键安装,简化了安装过程,使得用户可以更容易地使用这项技术。

💡Run Diffusion

Run Diffusion是一个在线平台,允许用户无需本地安装即可使用Stable Diffusion模型。视频中提到,即使使用低端电脑也能通过Run Diffusion进行操作,并且作者购买了其每月的creators package,以便安装特定的checkpoint。

💡ControlNet

ControlNet是视频中提到的一个工具,它包含open pose功能,用于提取和固定模特的身体姿态。这对于全身模特换装非常重要,因为它可以帮助保持衣服的原型,同时只改变模特的脸部、手部和脚部。

💡Open Pose

Open Pose是ControlNet中的一个功能,用于检测和提取人体姿态。在视频中,它被用来帮助进行全身模特换装,确保在替换模特时,衣服的原型得以保留,只有模特的身体姿态被改变。

💡Denoising Strength

去噪强度是Stable Diffusion中的一个参数,用于控制生成图像的清晰度。在视频中,作者提到了调整去噪强度以接近原始模特或更接近提示词,这影响了最终图像的质量。

💡Batch Count

批次数量是Stable Diffusion中的一个设置,它决定了一次生成的图像数量。视频中提到,增加批次数量可以提高找到高质量图像的概率,但同时也会增加计算资源的消耗。

💡Prompt Words

提示词是在使用Stable Diffusion时输入的描述性词汇,它们指导模型生成符合描述的图像。视频中,作者提到了使用提示词来保存和加载特定的生成设置,这对于控制生成过程至关重要。

💡Inpaint

Inpaint是视频中提到的一个功能,用于图像的修复和编辑。在Ai模特换装的过程中,如果手部或其他部分的生成效果不理想,可以使用Inpaint功能进行局部的修复和调整。

💡CFG Sale

CFG Sale是Stable Diffusion中的一个参数,用于控制图像生成的清晰度和细节。视频中,作者提到了调整CFG Sale的值,以获得更清晰的输出结果,尤其是在处理全身模特换装时。

Highlights

The video introduces a method for changing models' outfits in photos without altering the original clothing design.

Sister Xiaobai mentioned that there are already numerous teams working on model change technology.

The presenter uses stable diffusion technology for the model change process.

Google Collab is suggested as a simpler alternative for installing stable diffusion.

Run Diffusion is favored for its lack of geographical and computer restrictions.

The presenter has a monthly subscription to Run Diffusion's creators package for enhanced features.

A 15% discount code 'jojo15' is available for those who sign up for Run Diffusion through the presenter's link.

The simplest method demonstrated is for changing the face and hands in a half-length model photo.

The process for a full-body model changeover is also explained, utilizing open pose technology.

ControlNet with open pose is essential for full-body model changes to extract and fix the body's pose.

The importance of using the correct sampling method, DPM++ SDE Karas, for character images is emphasized.

The presenter shares their personal settings for the denoising strength and batch count during the image generation process.

Inpainting is used to fine-tune details such as hands and clothing after the initial model change.

The video demonstrates how to achieve a realistic transformation from a mannequin to a real-life model.

The presenter discusses the challenges and reliance on luck when generating satisfactory hand details.

A detailed walkthrough of using the Chilloutmix checkpoint on RunDiffusion is provided.

The video concludes with the presenter's confidence in the potential automation of the model change process in the near future.

The presenter's course, which includes examples and tips on creating effective prompts for stable diffusion, is mentioned.