用AI給人生開掛的正確方式: AI比人进化快的时代,學什麼才不落伍?
TLDR在AI快速发展的时代,人们面临着学习焦虑和知识更新的挑战。视频强调学习基础知识的重要性,如核心概念和跨学科思维,以及利用AI作为学习工具来加速掌握这些知识。作者通过个人经历和对AI技术的理解,提出了在AI时代成为超级学习者的建议,包括专注于基础概念、跨领域学习,并利用AI技术来增强学习效率。
Takeaways
- 🤖 AI的发展速度迅猛,让很多人感到焦虑和不安。
- 📚 即使没有编程基础,人们也应尝试学习AI并利用它成为超级学习者。
- 🚀 在AI不断进化的时代,我们应该专注于学习最基础和核心的big ideas。
- 🌐 跨领域学习其他行业的基础知识,成为行业内的外行人,可以增强个人的竞争力。
- 📈 AI技术的进步可能会使一些现有的技能和工具过时,但核心的基础知识始终有其价值。
- 🎥 例如,视频创作不仅仅是技术操作,更重要的是讲述故事的能力。
- 💡 真正的创意是基于对事物或行业基础本质理解的深入思考。
- 🧠 要充分利用AI作为工具来加速学习和执行过程。
- 📖 推荐阅读《The Art of Doing Science and Engineering》以学习如何思考和学习。
- 🔄 跨学科学习可以借助AI来快速掌握其他领域的基础概念。
- 🌟 在AI时代,个人需要从执行者转变为跨领域的决策者和创造者,以适应未来的变化。
Q & A
AI的快速发展给人们带来了哪些焦虑?
-AI的快速发展让人们担心自己的技能和知识可能会迅速过时,从而在职场上失去竞争力。
为什么即使没有编程基础,人们还是想要加入AI的学习大军?
-人们认识到AI技术的重要性和潜力,希望通过学习AI来提升自己的能力,抓住未来的发展机会。
在AI不断进化的背景下,什么样的知识才不会过时?
-基础的、核心的、具有杠杆效应的知识和概念(big ideas)是长期稳定的,它们是新技术和理论的源头,因此不容易过时。
如何成为一个超级学习者,以适应AI时代?
-应该专注于学习最基础最核心的知识,发展跨领域学习的能力,并利用AI来加速这一过程。
为什么即使AI工具和最新技术不断更新,我们仍需要关注基础的big ideas?
-因为这些基础的big ideas是所有新工具和技术的基础,它们是经过时间验证的,能够提供最稳定的支点,让我们在AI时代保持竞争力。
什么是廉价的想法(cheap ideas)?
-廉价的想法是指那些表面上看起来有创意,但实际上缺乏深度和实质内容的想法,它们往往不能产生真正的价值。
为什么说执行比想法更难?
-因为执行需要具体的行动和持续的努力,而不仅仅是有一个好的想法。在AI时代,虽然AI可以帮助我们执行一些任务,但没有深入的理解和创新的想法,我们无法充分利用AI的潜力。
如何利用AI来加速跨学科学习?
-我们可以通过AI来获取其他学科的基础big ideas,让AI作为我们的老师,帮助我们快速理解和应用这些知识。
为什么未来人们可能需要跨专业才能生存?
-因为AI的发展模糊了专业界限,减少了对特定工具和行业的需求。人们需要适应从领域内的执行者向跨领域的决策者和创造者的身份转变。
《The Art of Doing Science and Engineering》这本书对理解AI时代的挑战有何帮助?
-这本书提供了关于如何思考和学习的建议,它讨论了知识增长的速度和科学家数量的增加,以及如何在快速变化的环境中保持知识的更新,这对理解AI时代的挑战非常有帮助。
Outlines
🤖 AI Evolution and the Anxiety of Learning
The rapid evolution of AI, particularly the emergence of ChatGPT, has sparked a mix of excitement and anxiety among many individuals. The speaker, lacking a programming background, joined the AI learning wave and attempted to create an AI course. However, the swift updates in AI technology rendered parts of the course obsolete before completion. This experience reflects a common challenge in the developer community, where applications based on OpenAI's platforms can become obsolete with a single update. The speaker previously discussed the concept of natural language programming and encouraged embracing AI to become super learners. Yet, in an era where AI evolves faster than humans, the speaker questions what is meaningful to learn. The introduction of OpenAI's video generation model, Sora, further complicates this issue, as it not only advances video AI capabilities but also simulates the understanding of the physical world, potentially accelerating the development of AGI. The speaker, as a video creator, feels threatened by the advancements, as Sora could replace their role. The speaker then references Richard Hamming's book, 'The Art of Doing Science and Engineering,' discussing the exponential growth of human knowledge and the challenge faced by knowledge workers in deciding what to learn. Hamming suggests focusing on fundamental knowledge and developing the ability to learn new fields, emphasizing the importance of foundational concepts over specific tools or technologies.
🎬 The Importance of Storytelling in the Age of AI
The speaker explores the importance of storytelling and core video production processes in the context of AI advancements. While high-level tools and technologies are becoming increasingly accessible through AI, the speaker argues that the true value lies in one's ideas. However, the speaker warns against the misuse of the term 'ideas,' distinguishing between 'cheap ideas' and 'value ideas' that stem from a deep understanding of a field. The speaker criticizes videos that promise wealth through AI without the creators themselves pursuing those methods. The speaker emphasizes that execution is hard and ideas are even harder, advocating for a focus on foundational knowledge that can serve as a lever for innovation. The speaker suggests that the true leverage point in the AI era is not the latest tools but the most fundamental and core knowledge.
📚 Embracing Fundamentals and Cross-Disciplinary Learning
The speaker advocates for focusing on the most basic and core knowledge, or 'big ideas,' as the foundation for empowerment in the AI era. Despite the rapid obsolescence of specific tools and technologies, foundational knowledge remains stable and serves as a reliable fulcrum for leveraging AI. The speaker acknowledges that while each discipline's core foundational knowledge is limited, understanding these concepts is challenging and requires experience and active thought. The speaker recommends Charlie Munger's concept of 'Big Ideas' and suggests using AI, like ChatGPT, to identify and learn these foundational concepts. The speaker also addresses the misconception that cross-disciplinary learning is about challenging experts in other fields. Instead, it's about utilizing the expertise of others to solve problems in one's own field. The speaker emphasizes the power of combining a deep understanding of one's own field with a shallow understanding of other fields' big ideas.
🚀 AI as an Accelerator for Cross-Disciplinary Expertise
The speaker discusses how AI can accelerate the process of learning across disciplines. While the future may require many to become cross-disciplinary to survive, the speaker argues that this shift is not about replacing experts but rather about leveraging their expertise. AI is seen as a tool that can help individuals understand the core concepts of other fields more quickly. The speaker uses their own learning of music composition and programming as examples of how AI can assist in grasping the essentials of a new field. However, the speaker also warns that the future may force many to become cross-disciplinary as AI blurs professional boundaries and reduces the need for numerous tools and industries. The speaker concludes by emphasizing the necessity of adapting to this change to avoid obsolescence.
Mindmap
Keywords
💡AI
💡进化
💡超级学习者
💡基础知識
💡跨领域学习
💡Sora
💡The Art of Doing Science and Engineering
💡知识工作者
💡价值想法
💡Power Law
💡跨专业
Highlights
AI的快速发展引发了人们的焦虑和学习热潮,尤其是没有编程基础的人也尝试加入AI学习。
ChatGPT的升级快速淘汰了许多基于旧版本的应用和课程,突显了AI进化速度之快。
自然语言编程的概念被提出,建议人们使用AI成为超级学习者。
OpenAI的视频生成模型Sora的出现,不仅改变了视频AI的能力,还对现实世界的理解和模拟产生了深远影响。
在知识工作者面临学习挑战的背景下,推荐阅读Richard Hamming的《The Art of Doing Science and Engineering》。
人类知识每隔17年翻倍,科学家数量也在指数级增长,这使得学者与时俱进变得更加困难。
每15年就有一半的知识会变得过时,信息和媒体也在指数级增加。
在AI时代,我们应该专注于学习基础的、核心的、有杠杆力的big ideas。
跨领域学习其他行业的基础知识,成为最懂行的外行人。
利用AI加速学习基础和跨领域知识的过程。
在Sora时代,懂得讲故事和视频制作核心流程的人更容易创作出好作品。
AI时代,重要的不仅是执行,想法更难,需要基于行业本质的理解。
AI作为杠杆,其支点是最基础最核心的知识,而非最新的工具或技术。
每个行业的核心技术并没有想象的那么多,遵循二八原则,找到并学习Big Ideas。
跨专业不是为了挑战别人的专业,而是利用别人的专业来解决自己的问题。
AI模糊了专业界限,未来很多人必须跨专业才能生存。