【Stable-Fast-3D】超高速開源圖片轉 3D 模型 僅需 0.5 秒即可生成高品質模型!|僅需一張圖即可生成 3D 模型

The walking fish 步行魚
16 Aug 202406:54

TLDRStability AI 近期推出了一款名为 Stable-Fast-3D 的 AI 模型,能在 0.5 秒内将图片转换成 3D 模型。该模型基于 TripoSR 项目改良,改进了 UV 展开和材质参数预测,提升了逼真度。尽管生成的模型在细节上仍有不足,但适合用于游戏背景装饰或电子商务的 3D 展示。Stable-Fast-3D 在 GSO 和 OmniObject3D 数据集上的表现优于其他模型,已在 Hugging Face 上开源,供年收入 100 万美元以下的用户免费使用。

Takeaways

  • 😀 Stable-Fast-3D 是由 Stability AI 推出的一款开源AI模型,能在0.5秒内将图片转换为3D模型。
  • 📈 该模型基于 TripoSR 项目改良,改进了UV展开和材质参数预测,提高了模型逼真度。
  • 🎮 适用于游戏内角落装饰或远处物件的3D模型制作,也可用于电子商务和AR/VR快速模型创建。
  • 🌟 在 GSO 和 OmniObject3D 测试数据集上,Stable-Fast-3D 在 CD 和 F-score 指标上表现优异。
  • 🚀 模型已开源在 Hugging Face 上,年收入100万美元以下可免费商用或非商用。
  • 💻 官方建议运行模型的显卡至少需要6GB的VRAM。
  • 🔧 模型在处理有凹陷或遮挡的物体时,可能会将看不到的部分视为实心。
  • 🖼️ 模型的UV展开方式简单直观,但可能不利于后续的修改和优化。
  • 📉 生成的模型面数可能过高,不适合直接用于游戏,需要调整以减少性能影响。
  • 📹 视频作者通过实际测试,展示了模型在不同物体上的应用效果和局限性。

Q & A

  • Stable-Fast-3D是由哪个公司推出的?

    -Stable-Fast-3D是由Stability AI推出的。

  • Stable-Fast-3D的主要功能是什么?

    -Stable-Fast-3D的主要功能是将图片转换成3D模型,它能够在0.5秒内生成高品质的3D模型。

  • Stable-Fast-3D是基于哪个项目改良而来的?

    -Stable-Fast-3D是基于TripoSR项目改良而来的。

  • Stable-Fast-3D在哪些方面进行了改进?

    -Stable-Fast-3D在UV展开和材质参数预测方面进行了改进,使得生成的模型更加逼真。

  • Stable-Fast-3D在GitHub上的表现如何?

    -在GitHub上,Stable-Fast-3D展示了一些模型输出的Demo和与其他模型的比较,其生成效果虽然不够精致,但相较于其他模型表现优异。

  • Stable-Fast-3D的模型可以在哪些领域使用?

    -Stable-Fast-3D的模型可以用在游戏、电子商务的3D模型展示、AR、VR的快速模型创建等领域。

  • Stable-Fast-3D在技术测试中的表现如何?

    -在GSO和OmniObject3D这两个测试数据集上,Stable-Fast-3D在CD(Chamfer Distance)和F-score指标上得到了较高的分数,显示其生成模型与真实模型的接近度。

  • Stable-Fast-3D的开源情况如何?

    -Stable-Fast-3D已经在Hugging Face上开源,使用Stability AI社群授权释出,年收入100万美元以下的用户可以免费使用,无论是商用还是非商用。

  • 如果要在电脑上运行Stable-Fast-3D,官方推荐的显卡配置是什么?

    -官方建议运行Stable-Fast-3D的显卡至少需要有6GB的VRAM。

  • Stable-Fast-3D在处理有凹陷或遮挡的物体时表现如何?

    -Stable-Fast-3D在处理有凹陷或遮挡的物体时,倾向于将看不到的部分视为实心,这可能导致生成的模型在这些部分的形状与实际有所差异。

  • Stable-Fast-3D生成的模型面数是否适合直接用于游戏?

    -Stable-Fast-3D生成的模型面数可能过高,直接用于游戏可能会导致性能问题,通常需要进行调整以适应游戏引擎的要求。

Outlines

00:00

🤖 Introduction to Stable-Fast-3D AI Model

Stability AI has introduced a revolutionary AI model known as Stable-Fast-3D, which can convert 2D images into 3D models within 0.5 seconds. This model is an advanced, open-source solution that requires just a single image to generate high-quality 3D models. It has been improved upon the TripoSR project, offering more accurate UV mapping and material parameter prediction for a more realistic appearance. The model can be easily integrated into games and is capable of reducing the impact of lighting and shadows, ensuring more accurate texture maps even when the input photo has environmental lighting. Demos and comparisons with other models are available on Stability AI's GitHub repository and official website, showcasing its superior performance despite not being highly refined. The model has been tested on GSO and OmniObject3D datasets, achieving the highest scores in Chamfer Distance (CD) and F-score metrics, indicating closeness to real models. It is suitable for less critical game decorations, distant objects, and has potential applications in e-commerce 3D modeling, AR, and VR. The model is available for free under the Stability AI community license for commercial and non-commercial use for entities with an annual income of less than one million USD. It requires at least 6GB of VRAM for execution but is also accessible through a free Hugging Face Space for online use.

05:03

🛠️ Limitations and Practical Applications of Stable-Fast-3D

While Stable-Fast-3D excels in speed, it has certain limitations. The model struggles with objects that have self-occluding parts or depressions, tending to fill in unseen areas as solid. This can result in models with slightly odd internal shapes when only a single perspective is provided. The UV mapping approach used is straightforward but can be limiting for modifications, as it uses six views (top, bottom, left, right, front, back) without separating parts that could be independently mapped, such as chair legs. For objects like cups, a more common approach would be to map the outer wall as a single face and separate the inner wall, bottom, and handle. Despite these limitations, the model is suitable for simple WebAR applications with only a few models. However, for more complex uses, the model's high polygon count may not be ideal for games without adjustments. The video also notes that while the model can generate with either quadrilateral or triangular meshing, this option is not available in the free Hugging Face Space, and the generated models have a high polygon count, which could impact performance if used extensively in games.

Mindmap

Keywords

💡Stable-Fast-3D

Stable-Fast-3D 是由 Stability AI 推出的一款 AI 模型,它能够将图片转换成3D模型。在视频中,Stable-Fast-3D 被描述为超高速的开源工具,能在0.5秒内生成高品质的3D模型。这个关键词是视频的核心,因为它代表了视频介绍的主要技术。

💡开源

开源(Open Source)指的是源代码可以被公众查看、修改和增强的软件。在视频中,提到 Stable-Fast-3D 是一个开源项目,这意味着开发者和用户可以自由地访问、使用和修改其代码,促进了技术的共享和创新。

💡TripoSR

TripoSR 是一个先前存在的项目,Stable-Fast-3D 模型是基于此项目改良而来。TripoSR 在视频中被提及,表明 Stable-Fast-3D 在某些方面进行了改进,比如更精确的 UV 展开和材质参数预测,使得生成的3D模型更加逼真。

💡UV 展开

UV 展开是3D建模过程中的一个步骤,它将3D模型的表面展开成2D图像,以便将纹理映射到模型上。视频中提到 Stable-Fast-3D 在 UV 展开方面进行了改进,使得材质看起来更加逼真。

💡材质参数预测

材质参数预测是指 AI 模型预测3D模型表面材质属性(如颜色、光泽等)的过程。视频中提到 Stable-Fast-3D 能够更精确地预测材质参数,这对于生成逼真的3D模型至关重要。

💡光照和阴影

光照和阴影是影响照片和3D模型视觉效果的重要因素。视频中提到 Stable-Fast-3D 能够减少光照和阴影对材质贴图的影响,即使输入的照片有环境光,也能输出颜色较为正确的材质贴图。

💡Chamfer Distance (CD)

Chamfer Distance 是一种衡量生成模型与真实模型之间差异的指标,值越小表示两者越接近。视频中提到 Stable-Fast-3D 在 CD 指标上的表现优于其他模型,显示了其生成模型的准确性。

💡F-score

F-score 是一种衡量生成模型与真实模型之间相似度的指标,值越高表示两者越相似。视频中提到 Stable-Fast-3D 在 F-score 指标上的表现,表明其生成的模型在形状上与真实模型非常接近。

💡Hugging Face Space

Hugging Face Space 是一个在线平台,允许用户使用各种 AI 模型而无需自己配置环境。视频中提到 Stability AI 提供了免费的 Hugging Face Space,用户可以上传照片并快速生成3D模型,这体现了 Stable-Fast-3D 的易用性和可访问性。

💡VRAM

VRAM 指的是显卡的显存,对于运行需要大量图形处理的程序至关重要。视频中提到,如果要在本地电脑上运行 Stable-Fast-3D 模型,官方建议显卡至少需要有6GB的VRAM,这表明该模型对硬件有一定的要求。

Highlights

Stability AI推出了一款名为Stable-Fast-3D的AI模型,能在0.5秒内生成3D模型。

Stable-Fast-3D是基于TripoSR项目改良而来,具有更精确的UV展开和材质参数预测。

该模型能够降低光照、阴影等影响,输出颜色较为正确的材质贴图。

Stable-Fast-3D在GitHub上开源,使用Stability AI社群授权,年收入100万美元以下可免费使用。

模型执行建议显卡至少需要6GB的VRAM。

Stability AI提供了免费的Hugging Face Space,允许用户在线使用Stable-Fast-3D。

Stable-Fast-3D在GSO和OmniObject3D测试数据集上的表现优异。

模型在Chamfer Distance和F-score指标上得分高,显示其生成模型与真实模型的接近度。

Stable-Fast-3D在生成速度上略逊于TripoSR,但0.5秒的生成速度已经非常快。

模型在处理物体凹陷或遮挡部分时,倾向于将看不到的部分视为实心。

Stable-Fast-3D生成的模型面数较高,可能需要调整才能用于游戏。

模型的UV展开方式简单直观,但可能不利于后续的修改。

Stable-Fast-3D适合用于生成简单WebAR中的少量模型。

模型生成的物体如果具有大平面,可能会有凹凸不平的情况,难以进行改进。

Stable-Fast-3D在生成模型时,对于物体的内部结构和遮挡部分的处理存在局限性。

尽管Stable-Fast-3D在某些方面存在限制,但其快速生成模型的能力对于特定应用场景非常有用。